Back to Article
Vertical profile of WEP
Download Source

Vertical profile of WEP

Author

Alex Koiter

Load Libraries

In [1]:
library(tidyverse)
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr     1.1.4     ✔ readr     2.1.5
✔ forcats   1.0.0     ✔ stringr   1.5.1
✔ ggplot2   3.5.1     ✔ tibble    3.2.1
✔ lubridate 1.9.3     ✔ tidyr     1.3.1
✔ purrr     1.0.2     
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
library(viridis)
Warning: package 'viridis' was built under R version 4.4.2
Loading required package: viridisLite
library(patchwork)
Warning: package 'patchwork' was built under R version 4.4.2

Read in data

In [2]:
conc <- read_csv(here::here("./notebooks/P_concentration.csv")) %>%
  rename("conc" = "ak_content") %>%
  filter(timing == "Before") %>%
  mutate(sample_type = fct_recode(sample_type, "Ah" = "Soil")) %>%
  mutate(sample_type = fct_relevel(sample_type, c("Ah", "Organic", "Litter","Biomass"))) %>%
  mutate(location = fct_relevel(location, c("Upper", "Middle", "Lower")))
Rows: 1141 Columns: 8
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (5): sample_type, timing, plot, location, treatment
dbl (3): site, ak_content, year

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
mass_data <- read_csv(here::here("./notebooks/mass.csv")) %>%
  filter(timing == "Before") %>%
  mutate(sample_type = fct_relevel(sample_type, c("Biomass", "Litter")))
Rows: 576 Columns: 8
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (5): sample_type, timing, plot, location, treatment
dbl (3): site, dryweight, year

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
bd_data <- read_csv(here::here("./notebooks/bulk density.csv")) %>% # Bulk density measurements
  mutate(mass = bd * length_cm/100 * 1) %>%
  mutate(sample_type = fct_recode(sample_type, "Organic" = "LFH"))
Rows: 96 Columns: 7
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (4): plot, location, sample_type, treatment
dbl (3): site, length_cm, bd

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

Merge data

In [3]:
total_data <- conc %>%
  left_join(mass_data) %>%
  left_join(bd_data) %>%
  mutate(p_total = case_when(sample_type == "Biomass" ~ conc * dryweight/1000 /0.25,
                             sample_type == "Litter" ~ conc * dryweight/1000 /0.25,
                             sample_type == "Organic" ~ conc *mass,
                             sample_type == "Ah"  ~ conc *mass)) %>%
  mutate(sample_type = fct_relevel(sample_type, c("Ah", "Organic", "Litter","Biomass"))) %>%
  mutate(location = fct_relevel(location, c("Upper", "Middle", "Lower")))
Joining with `by = join_by(sample_type, site, timing, plot, location, year,
treatment)`
Joining with `by = join_by(sample_type, site, plot, location, treatment)`

Summary

In [4]:
conc %>%
  group_by(sample_type) %>%
  summarise(mean = mean(conc, na.rm = T),
            median = median(conc, na.rm = T),
            sd = sd(conc, na.rm = T),
            IQR = quantile(conc, 0.75, na.rm = T) -quantile(conc, 0.25, na.rm = T))
# A tibble: 4 × 5
  sample_type  mean median     sd    IQR
  <fct>       <dbl>  <dbl>  <dbl>  <dbl>
1 Ah           1.12  0.953  0.651  0.785
2 Organic      3.99  3.40   2.54   2.38 
3 Litter      39.7  39.0   23.2   32.9  
4 Biomass     91.7  82.8   46.4   54.3  
conc %>%
  group_by(sample_type, location) %>%
  summarise(mean = mean(conc, na.rm = T),
            median = median(conc, na.rm = T),
            sd = sd(conc, na.rm = T),
            IQR = quantile(conc, 0.75, na.rm = T) -quantile(conc, 0.25, na.rm = T))
`summarise()` has grouped output by 'sample_type'. You can override using the
`.groups` argument.
# A tibble: 12 × 6
# Groups:   sample_type [4]
   sample_type location    mean median     sd    IQR
   <fct>       <fct>      <dbl>  <dbl>  <dbl>  <dbl>
 1 Ah          Upper      1.38   1.24   0.803  0.901
 2 Ah          Middle     1.13   1.02   0.499  0.704
 3 Ah          Lower      0.864  0.726  0.507  0.387
 4 Organic     Upper      4.35   4.03   2.49   2.40 
 5 Organic     Middle     4.32   3.53   2.98   2.27 
 6 Organic     Lower      3.29   2.93   1.97   2.03 
 7 Litter      Upper     29.5   29.7   15.7   22.0  
 8 Litter      Middle    40.5   38.8   23.2   34.0  
 9 Litter      Lower     48.7   49.2   25.8   31.6  
10 Biomass     Upper     86.1   82.9   40.6   56.3  
11 Biomass     Middle    88.5   82.7   47.8   49.6  
12 Biomass     Lower    100.    82.6   49.8   63.6  
total_data %>%
  group_by(sample_type) %>%
  summarise(mean = mean(p_total, na.rm = T),
            median = median(p_total, na.rm = T),
            sd = sd(p_total, na.rm = T),
            IQR = quantile(p_total, 0.75, na.rm = T) -quantile(p_total, 0.25, na.rm = T))
# A tibble: 4 × 5
  sample_type  mean median    sd   IQR
  <fct>       <dbl>  <dbl> <dbl> <dbl>
1 Ah           49.5   42.5  29.5  32.0
2 Organic      19.9   17.7  13.7  15.6
3 Litter       15.7   11.1  14.3  14.3
4 Biomass      31.9   26.3  23.5  23.3
total_data %>%
  group_by(sample_type, location) %>%
  summarise(mean = mean(p_total, na.rm = T),
            median = median(p_total, na.rm = T),
            sd = sd(p_total, na.rm = T),
            IQR = quantile(p_total, 0.75, na.rm = T) -quantile(p_total, 0.25, na.rm = T))
`summarise()` has grouped output by 'sample_type'. You can override using the
`.groups` argument.
# A tibble: 12 × 6
# Groups:   sample_type [4]
   sample_type location  mean median    sd   IQR
   <fct>       <fct>    <dbl>  <dbl> <dbl> <dbl>
 1 Ah          Upper    64.5   57.7  35.8  41.5 
 2 Ah          Middle   49.0   44.6  21.5  26.0 
 3 Ah          Lower    35.1   28.9  21.4  18.3 
 4 Organic     Upper    23.1   22.1  13.1  17.1 
 5 Organic     Middle   19.2   17.8  12.6  10.4 
 6 Organic     Lower    17.4   12.8  14.8  11.8 
 7 Litter      Upper     8.75   6.66  7.50  8.25
 8 Litter      Middle   14.4    9.29 12.2  13.4 
 9 Litter      Lower    23.7   17.4  17.1  21.1 
10 Biomass     Upper    22.7   18.6  14.9  14.6 
11 Biomass     Middle   26.6   18.6  18.9  18.3 
12 Biomass     Lower    46.0   34.3  27.7  28.1 

Plots

Bulk Density

In [5]:
p5 <- ggplot(data = bd_data, aes(y = sample_type, x = bd, fill = location)) + 
  geom_boxplot() +
  theme_bw(base_size = 12) +
  labs(x = expression(paste("Bulk Density (", kg~m^{-3}, ")")), tag = "b)") +
  scale_fill_viridis_d(begin = 0.3, end = 1) +
  theme(legend.position = "bottom", 
        legend.title = element_blank(),
        axis.title.y = element_blank())

biomass and litter weights

In [6]:
p4 <- ggplot(data = mass_data, aes(y = sample_type, x = dryweight/1000 /0.25, fill = location)) + 
  geom_boxplot() +
  theme_bw(base_size = 12) +
  labs(x = expression(paste("Mass (", kg~m^{-2}, ")")), y = "P Source", tag = "a)") +
  scale_fill_viridis_d(begin = 0.3, end = 1) +
  theme(legend.position = "bottom", 
        legend.title = element_blank())
In [7]:
#|
p4 + p5 + plot_layout(guides = 'collect') & theme(legend.position = 'bottom', legend.title = element_blank())

a) Mass of biomass and litter before grazing and mowing and b) the bulk density of the organic layer and 10 cm Ah horizon

a) Mass of biomass and litter before grazing and mowing and b) the bulk density of the organic layer and 10 cm Ah horizon
In [8]:
p1 <- ggplot(data = conc, aes(y = sample_type, x = conc, fill = location)) + 
  geom_boxplot() + 
  #scale_x_log10() +
  theme_bw(base_size = 12) +
  theme(legend.position = c(0.2, 0.8),
        legend.title = element_blank()) +
  labs(x = expression(paste("WEP Concentration (", mg~kg^{-1}, ")")), y = "P Source", tag = "a)") +
  scale_fill_viridis_d(name = "Location", begin = 0.3, end = 1)
Warning: A numeric `legend.position` argument in `theme()` was deprecated in ggplot2
3.5.0.
ℹ Please use the `legend.position.inside` argument of `theme()` instead.
p1
Warning: Removed 2 rows containing non-finite outside the scale range
(`stat_boxplot()`).

p2 <- ggplot(data = total_data, aes(y = sample_type, x = p_total, fill = location)) + 
  geom_boxplot() + 
  #scale_x_log10() +
  theme_bw(base_size = 12) +
  theme(axis.title.y = element_blank(),
        legend.position = "none") +
  labs(x = expression(paste("WEP Total (", mg~m^{-2}, ")")), tag = "b)") +
  scale_fill_viridis_d(name = "Location", begin = 0.3, end = 1)
p2
Warning: Removed 2 rows containing non-finite outside the scale range
(`stat_boxplot()`).

In [9]:
#|
p3 <- p1+p2 + plot_layout(guides = 'collect') & theme(legend.position = 'bottom', legend.title = element_blank())  

p3
Warning: Removed 2 rows containing non-finite outside the scale range
(`stat_boxplot()`).
Removed 2 rows containing non-finite outside the scale range
(`stat_boxplot()`).
#|
#ggsave(plot = p3, filename = here::here("./Figures/Figure 2.png"), width = 174, height = 100, units = "mm", dpi = 600) 
Vertical and longitudinal profiles of a) WEP concentration and b) WEP content in the riparian areas prior to grazing and mowing treatments.
Vertical and longitudinal profiles of a) WEP concentration and b) WEP content in the riparian areas prior to grazing and mowing treatments.