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Abstract6

Riparian areas play an important role in maintaining water quality in agricultural7

watersheds by buffering sediment, nutrients, and other pollutants. Recent studies8

have shown that riparian areas are less effective as buffers and, in some cases, are9

a net source of phosphorus (P) in cold climates. This study assessed the impact of10

cattle grazing or harvesting of riparian areas on the spatial and vertical distribu-11

tion of P. This study measured the water-extractable phosphorus (WEP) in four12

distinctive sources: biomass, litter, organic layer, and Ah horizon in three riparian13

locations extending from the edge of the waterbody to the field edge. Four treat-14

ments were examined: 1) control; 2) grazing; 3) high-density grazing; and 4) mowing.15

Prior to implementing the treatments, the Ah (0-10cm) soil was the largest pool of16

WEP (42.5 mg m-2, ~44%); however, the biomass (i.e., standing vegetation) was a17

considerable proportion of the total (26.3 mg m-2, ~25%) WEP pool. The litter and18

organic layer had median WEP areal densities of 11.1 and 17.7 mg m-2, respectively.19

Findings revealed significant reductions in biomass WEP with median reductions of20

10.4 and 18.7 mg m-2 for high-density grazing and mowing treatments, respectively.21

This reduction was more pronounced in the lower riparian locations where there was22

more biomass available to be grazed or mowed. There were no detectable changes23

in the other sources of WEP across all the treatments. Assessment of the control24

plots (pre- and post-treatment) clearly indicate that there is considerable small-scale25

spatial variability in P measurements in riparian areas. Overall, the results of this26

study suggest that management practices that target vegetation, including harvest-27

ing and autumn short-term grazing, may be mechanisms to reduce the potential P28

loss during the snowmelt period. To fully assess the risk of P loss, studies investigat-29

ing other important riparian processes that also have a demonstrated impact on the30

P mobility, including freeze-thaw cycles and flooding, are needed.31

Plain Language Summary32

Riparian areas are important for keeping water clean in agricultural watersheds33

because they help filter out sediment, nutrients, and other pollutants. Some recent34

studies found that in cold climates, like the Canadian Prairies, riparian areas are35

not as effective at filtering out nutrients. Because of the freeze and thaw of soil and36

vegetation during the spring snowmelt riparian areas can be a source of phosphorus37

to the water instead of removing it. To see if we can reduce the loss of phosphorus,38

we looked at different sources of phosphorus in riparian areas including plants, dead39

vegetation, and soil. Cattle grazing and mowing were tested as ways of managing40

the riparian areas. Both cattle grazing and mowing reduced the amount of plant-41

based phosphorus without increasing the other sources. This shows that letting cows42

graze in the fall might be a good way to use this forage and also prevent too much43

phosphorus from getting into the water when the snow melts in the spring.44

Core ideas45

• Biomass and litter are substantial sources of WEP in riparian areas46

• Autumn cattle grazing and mowing treatments reduced the areal density of47

WEP in riparian biomass48

• There were no measurable changes in the areal density/concentration of WEP49

in the litter, organic layer, or Ah horizon post grazing50

• Large spatial variability in areal density/concentration of WEP exists in ripar-51

ian areas52

Abbreviations53

FTC, freeze-thaw cycle; MBFI, Manitoba Beef and Forage Initiatives; P, phosphorus;54

WEP, water extractable phosphorus55
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1 Introduction56

The increasing frequency and extent of algal blooms is typically linked to increased57

nutrient loading into lake and rivers. Phosphorus (P) loading is particularly concern-58

ing as this is generally the limiting nutrient in freshwater systems (Schindler et al.,59

2012). There have been many lab and field studies demonstrating the role and func-60

tionality of riparian areas in reducing P loading to surface water in agricultural set-61

tings (Yu et al., 2019). Infiltration, absorption, biological uptake, microbial activity,62

and sedimentation are the key processes that intercept and buffer the delivery of P63

(Lacas et al., 2005; Owens et al., 2007; McGuire and McDonnell, 2010).Convergence64

within the landscape coupled with climatic/weather conditions creates variability in65

hydrologic conditions and pathways, reducing the buffering capacity of riparian areas66

and ultimately resulting in reduced, inconsistent, and/or unsustainable reductions67

in P loading relative to many controlled experimental studies (Roberts et al., 2012;68

Habibiandehkordi et al., 2017).69

In cold climates, the reduced infiltration due to frozen ground, limited vegetation up-70

take, and low microbial activity coupled with a flashy hydrograph during snowmelt71

creates conditions that further compromise the buffering capacity of riparian areas72

(Kieta et al., 2018; Nsenga Kumwimba et al., 2023). Additionally, research increas-73

ingly shows that riparian areas can contribute P (i.e., net source) from soil and74

vegetation to the surrounding environment (Roberts et al., 2012). As soil P concen-75

tration increases, so does the risk of P loss through leaching and runoff (Habibian-76

dehkordi et al., 2019). Soil P release can be intensified during periods of inundation77

that often occur during the spring snow melt, due to both to a longer period of soil-78

water contact and an increased solubility of iron-bound P as soil redox conditions79

lower (i.e., become anaerobic) (Carlyle and Hill, 2001; Young and Briggs, 2008). Veg-80

etation P can become more mobile through the mineralization of P from decaying81

vegetation near the soil surface. There is also evidence that the longer vegetation-82

water contact during periods of inundation will also increase the mass of P leached83

out of the dead vegetation and contribute to the P available to be lost during runoff84

(Lozier and Macrae, 2017; Liu et al., 2019b). Both the soil and vegetation P sources85

can also be affected by freeze-thaw cycles (FTC). Repeated FTCs result in the cell86

disruption of microbial and plant biomass, releasing inter-cellular P to the surround-87

ing environment (Kieta and Owens, 2019).88

Management of riparian areas to maintain or enhance the buffering capacity of P is89

typically needed in the long term. Unlike nitrogen (N) where N can be significantly90

lost to the atmosphere through nitrification and denitrification to offset the con-91

tinued input (Lyu et al., 2021), P is generally only lost through runoff or leaching.92

Harvesting and removing of biomass from the riparian area for use as forage can be93

a practice to remove P. Mechanized biomass harvesting may be impractical or un-94

safe due to steep gradients, wet soil, and other obstacles like trees; however, livestock95

grazing in riparian areas (riparian pastures) is common in the Canadian Prairies96

due to the abundance of forage, particularly during drought. Livestock exclusion97

from riparian areas has been suggested as a best management practice to reduce the98

direct inputs of P, limit bank erosion, and avoid soil compaction (Krall and Roni,99

2023). However, strategies including alternative water sources, rotational grazing,100

timed-controlled grazing, rest-rotation grazing, and corridor fencing can all reduce101

those risks (Fitch et al., 2003).102

From a surface water quality perspective, understanding the near-surface P distribu-103

tion, both vertically and longitudinally, will help develop and identify best manage-104

ment practices for reducing P loading from riparian areas. Vertically, there are often105

four distinctive and identifiable sources of near-surface P: 1) biomass consisting of106

living standing vegetation; 2) litter consisting of fresh (within the first three years)107

residues; 3) partially to well-decomposed organic material; and 4) mineral soil (Reid108

et al., 2018). Longitudinally there often is a strong soil moisture gradient extending109
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from the edge of the waterbody to the field edge. This results in changes in the mass110

and composition of biomass and litter as well as soil properties including organic111

matter content and horizon thickness. A better understanding of the spatial vari-112

ability and relative contributions of the different sources of P is needed to assess the113

risks and benefits of different management strategies.114

Given the timing and processes of P dynamics within riparian areas in cold climates,115

like the Canadian Prairies, reducing the near-surface concentration of soluble P116

prior to spring snowmelt could be a strategy to limit the contribution of P from the117

riparian area to surface water. Therefore, the overall aim of this study is to assess118

the impacts of short-term autumn cattle grazing and mowing on the sources and119

distribution of P in riparian areas. The objectives of this study were to quantify 1)120

the vertical profile of WEP using four distinctive P sources: biomass, litter, organic121

layer, and Ah horizon; 2) each of the four distinctive P sources in three riparian122

locations, near the edge of the waterbody (lower), close to the field edge (upper),123

and in between (middle); and 3) the net change in each of the four sources of WEP124

in each riparian location in response to grazing, high-density grazing, and mowing125

(harvesting) of biomass. Understanding how riparian management practices affect126

the different sources of P can be used to help tailor management strategies in cold127

climates and ultimately reduce P loss and improve downstream water quality.128

2 Methods129

2.1 Site description130

Source: Article Notebook131

A randomized complete block experimental design was used to assess the sources of132

riparian P and investigate how it changes following cattle grazing or mowing treat-133

ments. The four treatments include control, graze, high-density graze, and mowing.134

Each treatment was replicated in riparian areas surrounding four prairie potholes135

(wetlands). Samples of biomass, litter, organic layer, and Ah horizon, were collected136

in three locations both pre- and post-treatment. The three sampling locations aimed137

to capture the topography of the riparian areas and include near the edge of the138

waterbody (lower), close to the field edge (upper), and the mid-point (middle). All139

samples were analyzed for WEP and the net change in each of the four distinctive140

sources of P following the treatment was evaluated. The study was replicated across141

three sequential years using the same plots. A workflow diagram showing the exper-142

imental setup, field work, sample preparation, and laboratory analysis can be found143

in Figure S1.144

The study was conducted at the Manitoba Beef and Forage Initiatives (MBFI) re-145

search farm (50.06∘N, 99.92∘W; 502 AMSL), approximately 25 km north of Brandon,146

Manitoba, Canada, in the Prairie Pothole region of North America (Figure 1). The147

normal (1981 – 2010) average daily air temperature was 2.2 ∘C, and the cumula-148

tive annual precipitation at Brandon was 474.2 mm, with 24.8 % falling as snow149

(Environment and Climate Change Canada, 2024). The Köppen-Geiger climate clas-150

sification is cold, without dry season, and with warm summer (Dfb) (Beck et al.,151

2018). The region is predominantly agricultural land use, including annual crops152

(grains and oil seeds) and grazing/forage. MBFI is a 260-hectare (ha) research and153

demonstration farm with a mix of pasture, hay, and forage/silage cropland. Prior to154

the establishment of MBFI the site was part of the Manitoba Zero Tillage Research155

Association farm (1993-2014) where annual crops, including oil seeds and grains,156

were grown. There are also numerous small permanent and ephemeral wetlands157

(potholes) and associated riparian areas which account for approximately 35% of158

the total farm land (Manitoba Beef & Forage Initiatives, 2024). The riparian areas159

surrounding the larger permanent wetlands are fenced off to exclude livestock and160

are not actively managed. Approximately half the farm has an irregular undulating161

to hummocky relief (2-5%) with the reminder being nearly level (0-2%). The soils162
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have developed on fine loamy, moderately calcareous glacial till. The drainage class163

in upper slope positions are well to rapidly draining while lower slope and riparian164

soils are poorly drained and primarily consist of Humic and Luvic Gleysols. The sur-165

face texture class of the riparian soil is a clay loam and pH values range from 7.1 to166

8.3 with a mean of 7.6. Generally the surface soil profile can be described by a 1-10167

cm organic layer overlying a 10-18 cm Ah horizon (Podolsky and Schindler, 1993).168

Vegetation was assessed using the foliar cover method for each plot within each of169

the four riparian areas. There was considerable variability among riparian areas,170

plots, and sampling locations (upper, midle, and lower). The four most dominant171

species identified were Sow Thistle (Sonchus arvensis), Smooth Aster (Aster laevis),172

Kentucky bluegrass (Poa pratensis), and Smooth Brome (Bromus inermis) and the173

complete assessment can be found in Figure S2. All riparian areas investigated in174

this study were adjacent to actively grazed pastures.175

Figure 1: Showing a) the location of the study site in southern Manitoba with an inset
map of Canada; and b) the locations of the four riparian areas included in this study

Source: Map of study area176

2.2 Experimental design177

Four riparian areas surrounding permanent wetlands were selected (Figure 1) and178

subdivided into four approximately 450 𝑚2 plots. Within each riparian area, each179

plot was randomly assigned a treatment. The treatments were 1) control, 2) graze,180

3) high-density graze, and 4) mow and harvest. The grazing treatments consisted181

of a five-hour grazing period, with the grazing treatment having 3.1-3.5 animal182

units per plot and the high-density grazing having 11.75-12 animal units. For the183

mowing treatment, the vegetation was cut to a height of 10cm, and the vegetation184

was manually raked out of the plot. The grazed plots were fenced on all four sides,185
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including the edge of the waterbody. The cattle were rotated among the four ripar-186

ian areas daily over four consecutive days and provided with supplemental water.187

Treatments were applied early to mid-September, before the first frost, in three con-188

secutive years (2019-2021) (Figure S3). Within each plot three distinctive sampling189

locations, or topographic positions, were established, adjacent to the edge of the190

waterbody (Lower), adjacent to the field/pasture (Upper), and at the mid-point191

(Middle). Samples were collected at each sampling location 1-3 days before and 1-192

3 days after treatment (including the control) to assess the impact of grazing and193

mowing. Before and after samples were collected at immediately adjacent locations.194

2.3 Sampling and analysis195

Four types of samples were collected: 1) biomass, 2) litter, 3) organic layer, and196

4) Ah horizon. Using a 0.25 𝑚2 quadrate, biomass was collected by cutting the197

standing live vegetation and litter by raking the surface and picking up the previ-198

ous year’s growth. Both the biomass and litter were dried at 40 ∘𝐶, weighed, and199

homogenized using a blade grinder (<1cm). A composite of five soil samples was200

collected within the same quadrat as the biomass/litter using a 19 mm diameter soil201

probe and was divided into the organic layer and the top 10 cm of the Ah horizon.202

The organic layer and Ah soil were air-dried, disaggregated with a mortar and pestle,203

and passed through a 2-mm sieve. Additional bulk density samples of both the or-204

ganic layer and Ah and the depth of the organic layer were collected in 2023. Daily205

air temperature and rainfall data were collected from an onsite station (Figure S3)206

(Manitoba Agriculture, 2023).207

Water Extractable Phosphorus (WEP), an environmental soil and vegetation P test,208

was used to mimic soil P release into runoff water. Dried and homogenized samples209

were extracted by shaking (150 RPM) with deionized water for one hour at a mass-210

to-volume ratio of 1:30 for the biomass and litter samples (1 g) and 1:15 for the211

organic and Ah samples (2 g). Extractions were gravity filtered through a Whatman212

42 filter followed by syringe filtration with a 0.45 𝜇𝑚 nylon filter. WEP in the ex-213

tract was measured spectrophotometrically by the colorimetric molybdate–ascorbic214

acid method (Murphy and Riley, 1962; Sharpley et al., 2006).215

The concentration of WEP (𝑚𝑔 𝑘𝑔−1) was calculated for all sources of P. In addi-216

tion, the areal density of WEP was calculated for biomass and litter by combining217

WEP concentration with the mass of material collected from the quadrat. The ver-218

tical profile of WEP within the riparian area assessed from samples collected before219

treatments were implemented across the 3-year study. For comparison, a rough esti-220

mation of areal density WEP in the organic layer and Ah was calculated using the221

bulk density and depth measurements collected in 2023 (Figure 2 b).222

2.4 Statistical analysis223

All statistical analysis, plotting, and mapping were undertaken using the R Sta-224

tistical Software (v4.4.0; R Core Team (2024)), through the RStudio Integrated225

Development Environment v2023.12.1.402 (RStudio, 2024). All plots and maps were226

created using the R package ggplot2 (v3.5.1; Wickham (2016)). Country and re-227

gional maps were created using data from the rnaturalearth package (Massicotte228

and South, 2023) and other maps using ESRI imagery and the OpenStreetMap pack-229

age (Fellows, 2023). Four Linear Mixed Models (R package glmmTMB v1.1.9; Brooks230

et al. (2017)) were used to investigate the effect of treatment and riparian sampling231

location (including interaction) on the change in WEP (before — after treatment)232

of for each of the four distinct sources of P (areal densities for biomass and litter;233

concentrations for organic matter and Ah). Year and riparian area were included as234

crossed random factors to control for the variability within years and riparian areas.235

Additionally, when investigating the net change in biomass WEP the initial biomass236

WEP (before applying the treatment) was included in the model as a covariate. This237

controls for the fact that the magnitude of change in biomass WEP (i.e., before -238
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after) is directly related to the mass of WEP initially available. By controlling for239

this, the model indicates which treatments resulted in a relatively greater change in240

biomass, rather than simply absolute change.241

The interaction between treatment and riparian sampling location was removed242

if non-significant (p < 0.05). When a main effect or interaction was significant,243

post-hoc pairwise comparisons with a Benjamini-Hochberg p-value adjustment were244

performed (p <0.05). When a main effect or interaction was significant, post-hoc245

pairwise comparisons with a Benjamini-Hochberg p-value adjustment was used246

(emmeans v1.10.1; Lenth (2024)). Model assumptions were assessed using DHARMa247

residual plots (DHARMa v0.4.6; Hartig (2022)), main effects were tested for collinear-248

ity (performance v0.12.2; Lüdecke et al. (2021)), and results were presented as249

type III ANOVA (car v3.1.2; Fox and Weisberg (2019)). For each unique source of250

WEP, the null hypotheses were: no difference in the net WEP among treatments or251

riparian sampling locations and no interactions between these two factors.252

Pearson correlations were performed to explore relations in WEP concentrations253

among the four unique P sources for each of the three topographic positions using254

samples collected before the application of the treatments. These relations were255

visualized using a scatterplot matrix created using the GGally R package (v2.2.1;256

Schloerke et al. (2024) )257

3 Results and Discussion258

3.1 Vertical profiles of P259

The biomass, litter, organic layer, and Ah horizon sources of P demonstrated a260

strong vertical stratification in both the concentration and areal densities of WEP261

(Figure 2). The median concentrations in the vegetation sources were 82.8 and 39.0262

𝑚𝑔 𝑘𝑔−1 for the biomass and litter components, respectively, which is more than263

an order of magnitude greater than the soil components (0.9 and 3.4 𝑚𝑔 𝑘𝑔−1; Ah264

and organic, respectively). Considerable variability in the WEP concentration in265

the biomass and litter sources were observed with interquartile ranges (IQR) of 54.3266

and 32.9 𝑚𝑔 𝑘𝑔−1 for the biomass and litter sources, respectively. In contrast, the267

IQR for the organic and Ah sources both were <2.5 𝑚𝑔 𝑘𝑔−1. Overall, in terms of268

the areal density of WEP, the top 10 cm of the Ah horizon was the largest source269

of WEP (42.5 𝑚𝑔 𝑚−2) followed by the biomass (26.3 𝑚𝑔 𝑚−2), organic layer (14.3270

𝑚𝑔 𝑚−2), and lastly the litter (13.7 𝑚𝑔 𝑚−2). Although it should be noted that271

these are only rough estimates for the organic layer and Ah horizon. Neverthe-272

less, the vertical profile of WEP in riparian areas (Figure 2) observed in this study273

supports the concept that a measure of P in soil alone is likely missing a large pro-274

portion of the near-surface P that can be potentially lost during the spring snowmelt275

(Liu et al., 2019a; b; Cober et al., 2019). The substantial proportion of WEP above276

the soil surface provides evidence that managing the biomass in riparian areas in277

autumn may reduce the contribution of P lost directly from this area during spring.278

Specifically, the harvesting of this biomass results in an export of P which can main-279

tain or enhance the buffering or storage capacity of P derived from upslope sources280

further improving downstream water quality (Kelly et al., 2007; Hille et al., 2019).281

–7–



manuscript submitted to TBD

Figure 2: Vertical and longitudinal profiles of a) WEP concentration and b) WEP con-
tent in the riparian areas prior to grazing and mowing treatments.

Source: Vertical profile of WEP282

3.2 Longitudinal profiles of P283

Prior to grazing and mowing treatments, the median WEP concentrations were284

similar among the upper, mid, and lower positions for the biomass samples. There285

was a small topographic trend in the WEP concentration for both the Ah and or-286

ganic litter P sources where the concentration decreased from the upper through287

to the lower sampling locations. The WEP concentrations in the Ah and organic288

layer were found to be significantly (p < 0.001) and positively correlated (r2 = 0.40)289

(Figure 2 and Figure S5). This topographic pattern is consistent with other studies290

and is likely due to the rapid physical and geochemical retention of upslope derived291

P within the first 5 m of the riparian area (Syversen and Borch, 2005).The litter292

showed the opposite topographic trend with higher WEP concentrations in the lower293

sampling locations. There was a significant (p < 0.001) positive correlation (r2 =294

0.34)between the WEP concentration in the biomass and litter samples suggesting295

that biomass with a high WEP concentration produces litter with a high WEP con-296

centration (Figure S5). There was no correlation (p > 0.05) between the Ah and297

biomass WEP concentrations suggesting that higher soil WEP concentration does298

not result in biomass with elevated WEP concentrations at this study site (Figure299

S5). There was no correlation (p > 0.05) between the Ah and biomass WEP concen-300

trations suggesting that higher soil WEP concentration does not result in biomass301

with elevated WEP concentrations at this study site (Figure S5). The variability302

is greatest in the Ah (IQR = 32.0 𝑚𝑔 𝑘𝑔−1) and biomass (IQR = 23.3 𝑚𝑔 𝑘𝑔−1)303

sources. The variability of the other two sources were similar with IQRs of 15.6 and304

14.3 𝑚𝑔 𝑘𝑔−1 for the litter and organic layer, respectively. Although there is some305

evidence that plants in P-rich environments will also be enriched in P (e.g., Kröger306
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et al., 2007)). For the biomass and litter sources the lower riparian locations had307

greater areal densities of WEP whereas the organic and Ah sources had greater areal308

densities of WEP in the upper riparian locations. The longitudinal gradient of WEP309

showed an inverted symmetry where the biomass WEP was largest near the lower310

sampling location and the Ah soil WEP was largest in the upper sampling location311

adjacent to the fields (Figure 2 b). The high soil water content in the lower loca-312

tion created conditions that favor high biomass production (Figure S4) ) and higher313

WEP concentration (Figure 2 a). The higher bulk density was most likely due to the314

lower soil organic matter content and the higher WEP concentration may be related315

to the interception of P-rich runoff from upslope areas (Tomer et al., 2007). Under-316

standing and quantifying the sources and patterns of P within riparian areas is a key317

part of assessing the risk of P loss as it helps to inform management decisions and318

target the largest sources of P (Reid et al., 2018).319

3.3 Impacts of grazing and mowing on P sources320

There was considerable variation across all treatments and riparian locations in all321

four P sources. This high variability in WEP areal density/concentration is best322

reflected in the control treatment where the expected difference was 0 (Figures 3-6),323

but WEP losses and gains were still observed despite no treatment being applied.324

However, despite this variability, several patterns demonstrating relationships among325

treatments and vertical and longitudinal P emerged.326

Results of the linear mixed model of areal density of biomass WEP show a signifi-327

cant effect of treatment (X2 = 24.8, df = 3, p < 0.001) and riparian location (X2 =328

15.7, df = 2, p < 0.001). Post-hoc comparisons showed that the net biomass WEP329

for the high-density grazing and mowing treatments were similar (p>0.05) but sig-330

nificantly (p<0.05) different from the control and graze treatments (Figure 3 a and331

Table 1).The mowing and high-density grazing reduced the average WEP areal den-332

sity by 7.4 and 4.2 𝑚𝑔 𝑚−2 relative to the control, respectively. The reduction in333

biomass WEP was significantly (p<0.05) greater in the lower sampling locations as334

compared to the upper and mid locations (Figure 3 b and Table 1) with a differ-335

ence in average WEP of 10.2 𝑚𝑔 𝑚−2 between the lower and upper locations of the336

riparian area.337
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Figure 3: Change in riparian biomass WEP following grazing or mowing in each riparian
location. Within each plot significant differences (p<0.05) between treatments or riparian
locations are denoted with different letters. Lower sampling locations are adjacent to the
edge of the waterbody and Upper locations are adjacent to the field.

Source: Riparian vegetation WEP in response to grazing338

Table 1: Results of the post-hoc pairwise comparisons with a Benjamini-Hochberg p value
adjustment for differences in the net biomass WEP (𝑚𝑔 𝑚−2) between the four treat-
ments and three riparian sampling locations.

Contrast Estimate SE df t ratio p value
Treatment

Control - High Graze −4.83 2.42 132 −2.00 0.072
Control - Mow −8.52 2.42 132 −3.52 0.002
Control - Graze 2.47 2.40 132 1.03 0.306

High Graze - Mow −3.69 2.43 132 −1.51 0.159
High Graze - Graze 7.30 2.42 132 3.02 0.006

Mow - Graze 10.99 2.42 132 4.55 <0.001
Location

Lower - Middle −7.94 2.43 132 −3.26 0.002
Lower - Upper −9.82 2.57 132 −3.83 <0.001
Middle - Upper −1.87 2.11 132 −0.89 0.377

Source: Riparian vegetation WEP in response to grazing339
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The model looking at areal density of litter WEP showed no significant impacts of340

either treatment (X2 = 1.15, df = 3, p = 0.23) or riparian location (X2 = 4.30, df =341

2, p = 0.56) (Figure 4). ). In contrast, the model exploring WEP concentration in342

the organic layer detected no significant difference among riparian locations (X2 =343

0.57, df = 2, p = 0.75) but did find a significant effect of treatment (X2 = 8.24, df =344

3, p = 0.04). However, the post-hoc pairwise comparisons (Table 2) found no signif-345

icant differences (p <0.05) among the treatments. Finally, there was no significant346

effect of treatment (X2 = 2.59, df = 3, p = 0.46) or riparian position (X2 = 1.17, df347

= 2, p = 0.56) on the concentration of WEP in the Ah horizon (Figure 6).348

Figure 4: Change in riparian litter WEP following grazing or mowing in each of the ri-
parian locations. No significant effect of treatment or riparian location on the litter WEP
content was detected. Lower sampling locations are adjacent to the edge of the waterbody
and Upper locations are adjacent to the field.

Source: Riparian litter WEP in response to grazing349
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Figure 5: Change in riparian organic layer WEP concentration following grazing or
mowing in each of the riparian locations. A significant effect of treatment was detected;
however, the post-hoc analysis was not able to detect any significant (p < 0.05) pairwise
contrasts. Lower sampling locations are adjacent to the edge of the waterbody and Upper
locations are adjacent to the field.

Source: Riparian organic and mineral soil WEP in response to grazing350

Table 2: Results of the post-hoc pairwise comparisons with a Benjamini-Hochberg p value
adjustment for differences in the net organic layer WEP (𝑚𝑔 𝑘𝑔−1) between the four
treatments.

Contrast Estimate SE df t ratio p value
Control - Graze −1.49 0.59 135 −2.50 0.066
Control - High Graze −0.63 0.59 135 −1.05 0.353
Control - Mow −1.38 0.59 135 −2.32 0.066
Graze - High Graze 0.86 0.59 135 1.45 0.299
Graze - Mow 0.11 0.59 135 0.18 0.856
High Graze - Mow −0.75 0.59 135 −1.27 0.311

Source: Riparian organic and mineral soil WEP in response to grazing351
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Figure 6: Change in riparian Ah layer (0-10cm) WEP concentration following grazing or
mowing in each of the riparian locations. No significant effect of treatment or location was
detected. Lower sampling locations are adjacent to the edge of the waterbody and Upper
locations are adjacent to the field.

Source: Riparian organic and mineral soil WEP in response to grazing352

Taken together, these results suggest that short-term autumn high-density grazing353

may be a potential management tool that can reduce the mass of P lost directly354

from the riparian area (Figure 3 a). In addition to managing P loss, grazing ripar-355

ian areas can also provide an essential source of forage, particularly during drought.356

Mechanized harvesting of biomass could also achieve this reduction in P loss (Fig-357

ure 3 a) if the landscape and soil conditions are favorable. Despite the cycling of358

nutrients by the removal of P through grazing of biomass (Figure 3) and the deposi-359

tion through excretion, no differences were detected in the litter and Ah sources of360

P (Figure 4, and 6). The models did detect a significant effect of treatment on the361

organic layer WEP; however, the pairwise comparisons were not able to detect any362

significant differences and the exact nature of the impact of the treatments remains363

unclear. The ability to detect changes in the WEP sources in riparian areas is dif-364

ficult due to spatial variability in both the pre- and post-grazing treatments. Even365

within the control plots, both net addition and removal of WEP were detected and366

in many cases the variability was similar to that of the other treatments. This inher-367

ent variability (i.e., pre-grazing) likely results from of a combination of hydrological368

factors like ground water fluctuations, soil attributes such as texture, ecological dy-369

namics involving plant community composition, and anthropogenic influences like370

historical land management practices (McClain et al., 2003; Vidon et al., 2010). In371

particular, the species cover information (Figure S2) demonstrates a wide range in372

species composition and abundance, this coupled with the variation in P release with373
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different vegetation species may explain some of the observed variability (Cober et374

al., 2018).375

3.4 Sources of variability and uncertainty in P sources376

The Prairie pothole wetlands regularly experience high water levels in the early377

spring. Automated observations made with a water level logger adjacent to one plot378

between October 2020 and May 2021 showed that the lower, middle, and upper379

sampling points experienced inundation for approximately 21, 11, and zero days,380

respectively (Noyes et al., 2024). The annual weather conditions and topography of381

riparian areas surrounding the wetlands will impact the length and extent of flood-382

ing. Prolonged contact with water has been shown to increase the mass of WEP383

lost in both soil (Young and Briggs, 2008) and vegetation (Lozier and Macrae, 2017)384

and may also explain some of the observed variability. As reported by Podolsky and385

Schindler (1993), the soils surrounding these potholes are typically low in CaCo3386

and have a neutral to slight alkaline pH. In this pH range (6.5 to 7.5) P availability387

is typically at its highest and not expected to precipitate with Ca. A more detailed388

soil chemical analysis, particularly Fe and Mn, along with soil saturation duration389

information (i.e., redox) would be needed to fully assess the potential for P loss390

during the spring (Walton et al., 2020). The WEP protocol used for both soil and391

vegetation samples are not likely to capture mobilize redox-sensitive P from the soil392

(Walton et al., 2020) or enhanced P leaching from vegetation (Lozier and Macrae,393

2017). Similarly, the WEP protocol also does not capture the enhanced P release394

from soil and vegetation that results repeated freeze-thaw cycles (Liu et al., 2013;395

Lozier and Macrae, 2017). However, temperature sensors placed at the soil surface396

adjacent to one plot recorded four freeze-thaw cycles between Oct 2020 and May397

2021 and found that surface temperatures fluctuations are moderated in this region398

by the relatively persistent snowpack (Noyes et al., 2024).), reducing the potential399

effects of freeze-thaw cycles on P release. However, both the prolonged contact with400

water and freeze-thaw cycles are not captured in the WEP protocols and may result401

in an underestimation of the potential for P loss from the each of the four distinctive402

sources of P in riparian areas.403

In addition to climatic effects, there may be variability in P as a side effect of the404

study design. One source of variability could be from added urine and manure in405

grazed areas which likely created additional hotspots of P that may carry forward406

to subsequent years (Subedi et al., 2020; Donohoe et al., 2021). However, there407

was no indication of P accumulation due to grazing in any of the four distinctive408

P sources over the 3-year study period. The highest concentrations of WEP were409

typically found in the second year of the study (Figure S6). This suggests that other410

biophysical processes regulated by weather conditions (Figure S3) were of greater im-411

portance in controlling the WEP concentrations than P additions from cattle urine412

and manure. Another source of variability may have been from sampling. As there413

was significant variability among plots, the single 0.25 𝑚2 sampling quadrat within414

each riparian location may have been insufficient to capture the spatial variability.415

Therefore, larger composite and/or several sampling locations within each upper,416

middle and lower locations are recommended. Appropriate sampling design becomes417

critical as the scale of observation of similar research increases to the farm scale, and418

so will the range and sources of variability. As the scope of research is expanded419

to the farm level, the importance of using an appropriate sampling design becomes420

increasingly critical (Hale et al., 2014).421

The single 0.25 𝑚2 sampling quadrate within each riparian location may have been422

insufficient to capture the spatial variability. Therefore, larger composite and/or423

several sampling locations within each upper, middle and lower locations are recom-424

mended. There was no indication of P accumulation due to grazing in any of the425

four distinctive P sources over the 3-year study period. The highest concentrations426

of WEP were typically found in the second year of the study (Figure S6). This sug-427
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gests that other biophysical processes regulated by weather conditions (Figure S3)428

were of greater importance in controlling the WEP concentration than any possible429

P additions from cattle urine and manure. Appropriate sampling design becomes430

critical as the scale of observation of similar research increases to the farm scale, and431

so will the range and sources of variability. As the scope of research is expanded432

to the farm level, the importance of using an appropriate sampling design becomes433

increasingly critical (Hale et al., 2014).434

3.5 Management implications435

Autumn was selected for the mowing and grazing treatments for three reasons. The436

first was to reduce the mass of biomass P available that can contribute to the P437

loss during the spring snowmelt. Second, drier soil conditions reduce the extent of438

pugging and soil compaction, which limits the disruption of soil structure and dam-439

age to plants (Batey, 2009). ). Lastly, the Prairie potholes and associated riparian440

areas are important breeding habitats for migratory birds. Grazing can negatively441

affect these species, but late-season grazing may reduce this potential ecological442

impact (Stanley and Knopf, 2002). However, the type of grazing system (timing,443

stocking rate, and density, etc.) may impact habitat quality and breeding success444

(Carnochan et al., 2018; Hansen et al., 2019; Kraft et al., 2021). Corridor fencing445

at the edge of the waterbody and alternative water sources were used in this study446

to limit livestock access in order to prevent bank erosion and protect water quality447

(e.g., direct deposition) (Dauwalter et al., 2018). Scaling this to the farm level would448

require virtual fencing or infrastructure (Aarons et al., 2013) and time (to conduct449

short-term grazing), especially in Prairie pothole regions where there are numerous450

and small riparian areas (Sovell et al., 2000; Hubbard et al., 2004; Hulvey et al.,451

2021; Manitoba Agriculture, 2024). The long-term impacts of repeated grazing of452

riparian areas also need to be considered. From a nutrient loss reduction perspective,453

a shift in the magnitude of P sources could be expected as less biomass is available454

to be added to the litter source, affecting the organic layer and Ah sources of P.455

The regular inclusion of cattle will also introduce a new manure source of P, which456

can spatially redistribute P and initially be more water soluble and readily trans-457

ported (Franzluebbers et al., 2019). Grazing can also reduce the litter layer through458

trampling increasing the soil-vegetation contact and speeding up the decomposition459

process. These changes in biomass and litter quantities may result in changes to460

habitat structure. Although this study generally considers environmental implica-461

tions, forage management practices also have an agronomic effect which should be462

taken into consideration when developing best management practices (Subedi et al.,463

2020).464

4 Conclusion465

Biomass and litter are significant sources of near-surface WEP in riparian areas that466

have been historically disregarded in studies. Management of the biomass prior to467

the onset of winter conditions in cold climates has the potential to reduce the mass468

of P directly lost during the spring snowmelt and maintain or enhance the nutrient469

buffering capacity. The results from this experiment demonstrated that short-term470

high-density cattle grazing and mowing both resulted in a reduction in the mass of471

biomass WEP, particularly in the lower riparian locations. The grazing and mowing472

treatments had no detectable effect on the other three near-surface sources of WEP.473

However, detecting changes in the near-surface sources of WEP is challenging due to474

high spatial variability.475

Additional work on riparian management strategies is needed to address the specific476

challenges posed by cold climates. In these regions, the runoff and nutrient losses477

occur predominately during the spring snowmelt period when the ability of riparian478

areas to trap and retain nutrients is diminished. Further, the repeated FTC of the479

vegetation and soils increases the potential P losses during this key time. Contin-480
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ued research to identify, quantify, and manage these sources of P to improve water481

quality remains a priority. In addition to improving water quality, the development482

of riparian management strategies should prioritize the protection other ecological483

goods and services and recognize these areas as an integral part of the farm.484
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Figure S1: Workflow diagram showing the experimental setup (yellow), field work (green),
sample preparation (brown), and laboratory analysis (blue).–22–
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Figure S2: Initial year (2019) cover assessment using the foliar cover method for each plot
within the four riparian locations
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Figure S3: Average daily air temperature and cumulative rainfall over the growing season
over the three year study. Red bars indicate sampling dates

Figure S4: a) Mass of biomass and litter before grazing and mowing (2019-2021) and b)
the bulk density of the organic layer and 10 cm Ah horizon (2023)
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Figure S5: Generalized pairs plot showing the data and relationships between WEP con-
centration between the different sources of Phosphorus at the lower (purple), middle
(blue), and lower (green) topographic positions. Data set only includes samples collected
before grazing and mowing treatments were applied. Corr indicates the pearson correla-
tion coefficient. *** p-value < 0.001, ** p-value < 0.01, ** p-value < 0.05.
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Figure S6: Mean and standard deviation WEP concentration for each of the different
sources of Phosphorus at each topographic position over the three year period of obser-
vations. Data set only includes samples collected before grazing and mowing treatments
were applied.

–26–


